
Abiotic stress, the field environment
and stress combination
Ron Mittler

Department of Biochemistry and Molecular Biology, University of Nevada, Mail Stop 200, Reno, NV 89557, USA
Farmers and breeders have long known that often it is

the simultaneous occurrence of several abiotic stresses,

rather than a particular stress condition, that is most

lethal to crops. Surprisingly, the co-occurrence of

different stresses is rarely addressed by molecular

biologists that study plant acclimation. Recent studies

have revealed that the response of plants to a

combination of two different abiotic stresses is unique

and cannot be directly extrapolated from the response of

plants to each of the different stresses applied individu-

ally. Tolerance to a combination of different stress

conditions, particularly those that mimic the field

environment, should be the focus of future research

programs aimed at developing transgenic crops and

plants with enhanced tolerance to naturally occurring

environmental conditions.

Abiotic stress research: a reality check

Abiotic stress conditions cause extensive losses to
agricultural production worldwide [1,2]. Individually,
stress conditions such as drought, salinity or heat have
been the subject of intense research [2,3]. However, in the
field, crops and other plants are routinely subjected to a
combination of different abiotic stresses [4–7]. In drought-
stricken areas, for example, many crops encounter a
combination of drought and other stresses, such as heat or
salinity [4,5]. Recent studies have revealed that the
molecular and metabolic response of plants to a combi-
nation of drought and heat is unique and cannot be
directly extrapolated from the response of plants to each of
these different stresses applied individually [8–11].
Studies of simultaneous stress exposure in different plants
are well documented in various agronomic and horticul-
ture journals. In addition, tolerance to a combination of
two different abiotic stresses is a well-known breeding
target in corn and other crops [5–7]. Nevertheless, little is
known about the molecular mechanisms underlying the
acclimation of plants to a combination of two different
stresses [10]. Because the majority of abiotic stress studies
performed under controlled conditions in the laboratory do
not reflect the actual conditions that occur in the field, a
considerable gap might exist between the knowledge
gained by these studies and the knowledge required to
develop plants and crops with enhanced tolerance to field
conditions. This gap might explain why some of the
transgenic plants developed in the laboratory with
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enhanced tolerance to a particular biotic or abiotic stress
condition failed to show enhanced tolerance when tested
in the field [12–14]. A focus on molecular, physiological
and metabolic aspects of stress combination is needed to
bridge this gap and to facilitate the development of
crops and plants with enhanced tolerance to field
stress conditions.
Tailoring a response to a particular stress situation

Plant acclimation to a particular abiotic stress condition
requires a specific response that is tailored to the precise
environmental conditions the plant encounters. Thus,
molecular, biochemical and physiological processes set in
motion by a specific stress condition might differ from
those activated by a slightly different composition of
environmental parameters. Illustrating this point are
transcriptome profiling studies of plants subjected to
different abiotic stress conditions: each different stress
condition tested prompted a somewhat unique response,
and little overlap in transcript expression could be found
between the responses of plants to abiotic stress
conditions such as heat, drought, cold, salt, high light
or mechanical stress [10,15–18]. Although reactive
oxygen species (ROS) are associated with many different
biotic or abiotic stress conditions, different genes of the
ROS gene network of Arabidopsis were found to respond
differently to different stress treatments [19]. These
findings suggest that each abiotic stress condition
requires a unique acclimation response, tailored to the
specific needs of the plant, and that a combination of two
or more different stresses might require a response that
is also unique.

In addition to the basic differences that exist between
the acclimation responses of plants to different abiotic
stress conditions [10,15–18], when combined, different
stresses might require conflicting or antagonistic
responses. During heat stress, for example, plants open
their stomata to cool their leaves by transpiration.
However, if heat stress is combined with drought, plants
would not be able to open their stomata and their leaf
temperature would be higher [9]. Salinity or heavy
metal stress might pose a similar problem to plants
when combined with heat stress because enhanced
transpiration could result in enhanced uptake of salt
or heavy metals. Cold stress or drought, combined with
high light conditions, result in enhanced production of
ROS by the photosynthetic apparatus because these
conditions limit the availability of CO2 for the dark
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reaction, leaving oxygen as one of the main reductive
products of photosynthesis [20]. Another example of
antagonism between different abiotic stresses is drought
and heavy metal stress, which exaggerate the effects of
each other [21]. Because energy and resources are
required for plant acclimation to abiotic stress conditions
(e.g. for the synthesis of heat shock, or late embryogen-
esis abundant proteins), nutrient deprivation could pose
a serious problem to plants attempting to cope with
heat, cold or drought stress. Likewise, limited avail-
ability of key elements such as iron, copper, zinc or
manganese, which are required for the function of
different defense enzymes, such as superoxide dismutase
or ascorbate peroxidase, could result in an enhanced
oxidative stress in plants subjected to different abiotic
stresses [22]. The acclimation of plants to a combination
of different abiotic stresses would, therefore, require an
appropriate response customized to each of the individ-
ual stress conditions involved, as well as tailored to the
need to compensate or adjust for some of the antagon-
istic aspects of the stress combination.
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Figure 1. The effects of a combination of drought and heat stress on US agriculture. (a) To
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combination on plant and crop performance.
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Case study: drought and heat stress

Drought and heat stress represent an excellent example of
two different abiotic stress conditions that occur in the
field simultaneously [5–7]. Several studies have examined
the effects of a combination of drought and heat stress on
the growth and productivity of maize, barley, sorghum and
different grasses. It was found that a combination of
drought and heat stress had a significantly greater
detrimental effect on the growth and productivity of
these plants and crops compared with each of the different
stresses applied individually [5–7,23–27]. A sum of all
major US weather disasters between 1980 and 2004
(excluding hurricanes, tornadoes and wildfires;
Figure 1a) demonstrates the extent of the damage caused
by a combination of drought and heat stress [compare the
damage caused by drought to that caused by drought
combined with a heat wave in Figure 1a, and compare the
maps showing vegetation health in Figure 1b: August
1997 (no drought, no heat wave), August 2000 (drought
combined with a heat wave) and August 2002 (drought
without a heat wave)]. The vast agricultural areas
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Figure 3. Unique molecular characteristics of drought and heat stress combination.
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in parentheses. Data was obtained from [10].
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potentially affected by a combination of drought and heat
stress can be extrapolated from weather maps and
satellite images of the USA during August 2000, a
month in which the co-occurrence of drought and heat
stress caused damage costing more than US$4.2 billion
(Figure 1c). The data shown in Figure 1 support the
findings described above [5–7,23–27], and vividly demon-
strate the impact that drought and heat stress have on
agriculture when combined.

Physiological characterization of plants subjected to
drought, heat stress or a combination of drought and heat
stress reveals that the stress combination has several
unique aspects, combining high respiration with low
photosynthesis, closed stomata and high leaf temperature
(Figure 2) [9]. Starch breakdown coupled with energy
production in the mitochondria might, therefore, play a
key role in plant metabolism during a combination of
drought and heat stress [9,10]. Transcriptome profiling
studies of plants subjected to drought, heat stress or a
combination of drought and heat stress support the
physiological analysis of plants (Figure 2) [9,10] and
suggest that the stress combination requires a unique
acclimation response involving O770 transcripts that are
not altered by drought or heat stress (Figure 3) [10].
Similar changes in metabolite accumulation were also
found, with several unique metabolites, mainly sugars,
accumulating specifically during the stress combination
(Figure 3) [10]. By contrast, the level of proline, thought to
be important for plant protection during drought stress
[2,3], is strongly suppressed during a combination of
drought and heat stress [10]. The profiling experiments
summarized in Figure 3 further illustrate that the
acclimation responses of plants to heat or drought stress
TRENDS in Plant Science 
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Figure 2. Unique physiological characteristics of drought and heat stress
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parameters. Data was obtained from [9,10].
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are different and only a small overlap in transcript
expression has been found between these responses.

Overall, the example of drought and heat combination
underlines the potential severity of a stress combination,
as well as its unique physiological, molecular and
biochemical aspects. The results presented in Figures 1–
3 strongly argue for a need to develop dedicated research
programs aimed at enhancing the tolerance of plants and
crops to a combination of different abiotic stresses.
Regulatory aspects of stress combination: a key to

enhancing tolerance?

Enhancing plant tolerance to biotic or abiotic stress
conditions by activating a stress-response signal transduc-
tion pathway in transgenic plants is a powerful and
promising approach [3,28–30]. It is logical to assume that
the simultaneous exposure of a plant to different abiotic
stress conditions will result in the co-activation of
different stress-response pathways. These might have a
synergistic or antagonistic effect on each other. In
addition, dedicated pathways specific for the particular
stress combination might be activated [10]. Several
examples of synergistic or antagonistic relationships
between different pathways exist. Heat stress was found
to silence the UV-B response of parsley [31], whereas
ozone induces the UV-B and/or pathogen responses of
some other plants [32]. The phenomenon of cross-hard-
ening, which reflects some of the synergistic relationships
among different stresses, has been reviewed in several
papers (e.g. [33]).

Cross-talk between co-activated pathways is likely to be
mediated at different levels. These could include inte-
gration between different networks of transcription
factors and mitogen-activated protein kinase (MAPK)
cascades [34,35], cross-talk mediated by different stress
hormones such as ethylene, jasmonic acid and abscisic
acid [36], cross-talk mediated by calcium and/or ROS
signaling [19,33], and cross-talk between different
receptors and signaling complexes [37]. Although evidence
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Figure 4. Agriculturally important stress combinations (‘The Stress Matrix’).

Different combinations of biotic and abiotic stresses are presented in the form of

a matrix to demonstrate potential interactions that can have important implications

for agriculture. Different interactions are color coded to indicate potential negative

[i.e. enhanced damage or lethality owing to the stress combination (purple)] or

potential positive [i.e. cross-protection owing to the stress combination (green)]

effects of the stress combination on plant health. However, the potential effects of

stress combination could vary depending on the relative level of each of the

different stresses combined (e.g. acute versus low) and the type of plant or

pathogen involved. Data to generate the matrix was obtained from [4–10,21–23,25–

27,31–33,35,36,38–45].
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exists for stress-mediated cross-talk at the level of MAPKs
and hormone signaling [34–36], much remains to be
studied, particularly if we wish to use specific signal
transduction components as a molecular leverage to
enhance the tolerance of plants and crops to a combination
of different stresses. Ethylene was recently shown to play
a central role in the response of Arabidopsis to a
combination of heat and osmotic stress, and expression
of the transcriptional co-activator MBF1c in Arabidopsis
was found to enhance the tolerance of transgenic plants to
heat and osmotic stress by partially activating or
perturbing the ethylene-response signal transduction
pathway [11].

Summary and conclusions: the ‘stress matrix’

The extent of damage caused to agriculture by a
combination of two different stresses (Figure 1) under-
scores the need to develop crops and plants with enhanced
tolerance to a combination of different abiotic stresses.
Drawing upon the limited physiological, molecular and
metabolic studies performed with plants that were
simultaneously subjected to two different abiotic stresses
(Figures 2–3) [5–11,23–27], it is not sufficient to study
each of the individual stresses separately. The stress
combination should be regarded as a new state of abiotic
stress in plants that requires a new defense or acclimation
response. It should be studied in the laboratory or the field
by simultaneously exposing plants to different abiotic
stresses [10]. In addition, transgenic plants with enhanced
tolerance to biotic or abiotic stress conditions should be
tested for their tolerance to a combination of different
stresses before they are introduced into field trials.

We face many challenges in our attempts to develop
transgenic plants with enhanced tolerance to a stress
combination. Tolerance to a combination of different
stresses is likely to be a complex trait involving multiple
pathways and cross-talk between different sensors and
signal transduction pathways. Mapping genes essential
for tolerance to a combination of abiotic stresses could,
therefore, be costly and pose a technical challenge
requiring multiple controls. In addition, resistance to a
combination of different stresses could be genetically
linked to suppressed growth or yield of plants. However,
some stress combinations have the advantage of enhan-
cing lethality [25]. Genetic screens of mutant or inbred
lines could, therefore, be turned into selection for
survivors with enhanced tolerance, and identified genes
could be tested in transgenic plants.

What stress combinations should we study? Figure 4
summarizes many of the stress combinations that could
have a significant impact on agricultural production (The
‘Stress Matrix’). Perhaps the most studied interactions
presented in Figure 4 are those between different abiotic
stresses and pests or pathogens (i.e. biotic stress). In some
instances it has been reported that a particular abiotic
stress condition, such as ozone stress, enhances the
tolerance of plants to pathogen attack [38,39]. However,
in most cases, prolonged exposure of plants to abiotic
stress conditions, such as drought or nutrient deprivation,
results in the weakening of plant defenses and enhanced
susceptibility to pests or pathogens [32,40]. In contrast to
www.sciencedirect.com
the biotic–abiotic axis, most of the different abiotic stress
combinations presented in Figure 4 have received almost
no attention. The experience of farmers and breeders
should be used as a valuable guide and resource to
molecular biologists trying to address a specific stress
combination that is pertinent to their crop of interest or
region. The data presented in, for example, Figure 1,
combined with different reports available from websites
such as http://www.usda.gov/wps/portal/usdahome indi-
cate that major US crops, including corn and soybean, are
particularly vulnerable to a combination of drought and
heat stress. By contrast, reports from northern countries
such as Sweden or Canada identify a combination of cold
stress and high light as having a major rate-limiting affect
on agriculture.

Perhaps the most important guideline for studying
abiotic stress combination is to address it as if it is a new
state of abiotic stress in plants and not simply the sum of
two different stresses. To develop transgenic crops with
enhanced tolerance to field conditions, researchers need to
widen their area of study to include stress combination.
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